The C++ Memory Model

Abstract

This paper describes current support of atomics and memory ordering
provided by C++ which are the foundations of its memory model. It is
based on Rainer Grimm', Valentin Ziegler and Fabio Fracassi® conferences

1 Multi-threading with C++

Since C++11 a new set of features has given answer to the requirements of
multicore architectures thanks to:

e A standardized thread interface:

— Threads and tasks.

Shared data protection and safe initialization.
Thread-local data (i.e. allocated in TLS).

Synchronization of threads.

e A well defined memory model:

— Atomic operations
— Partial ordering of operations

— Visible effects of operations

The memory model describes the interactions between threads through mem-
ory, in particular relatively to their shared use of data. The compiler can be
forced to respect some constraints which affect its code generator in order to
avoid instruction reordering that would break the expected intuitive behaviour
of the program.

The constraints fixed by the memory model also help to avoid data races on
shared data. In general, a data race happens under the following conditions:

e Memory operations deal with a memory location which is an object of
scalar type or a maximal sequence of adjacent non-zero width bit-fields.

e Two or more threads access to the memory location concurrently and at
least one of them writes to it.

Ihttps://www.youtube.com/watch?v=e0DsVqZLMzU
2https://www.think-cell.com/en/career/talks/pdf/think-cell_talk_memorymodel.
pdf


https://www.youtube.com/watch?v=e0DsVqZLMzU
https://www.think-cell.com/en/career/talks/pdf/think-cell_talk_memorymodel.pdf
https://www.think-cell.com/en/career/talks/pdf/think-cell_talk_memorymodel.pdf

e Two conflicting actions are performed by distinct threads and none of
these actions happens-before the other.

For example:

int i; // These are all shared data whose
char c; // variable names represents memory
int a:5, b:7; // locations which are scalar or
unsigned char x*p; // adjacent bit—fields.

void Tl_func() {
a = 10;
unsigned char xtmp = p;
int n = 1i; // Data race!!!

}

void T2_func() {
c = I@I;
unsigned char xtmp = p;
i = 1024; // Data racel!!!

}

int main() {
thread T1(T1l_func);
thread T2 (T2_func);

T1l.join();
T2.join();

}

2 The Contract

In order to obtain highly optimized programs tailored for the target architecture
and, at the same time, preserve the program semantic, a contract is established
between the programmer and the system, according to which the former follows
some rules concerning;:

e Atomic operations.
e Partial ordering of memory operations.
e Visible effects of memory operations.

The system will then perform code optimization at its best and the gen-
erated assembly code won’t break the original source code as expected by the
programmer.

The optimization level that the compiler can perform varies with the con-
straints that the contract imposes. The weaker are the constraints, the more
are the possible optimizations at compile-time:

e A single-threaded program is the strongest contract as there’s no risk of
data races but the optimization possibilities are limited.




e A multi-threaded program guarantees better performances but it’s also
more risky as it is potentially exposed to data-races, specially if the ex-
pertise level of the programmer is not adequate.

e Atomic operations and memory ordering constraints are an even
weaker contract but they allow the best optimizations for a concurrent
program. However the risks are the highest, as the expertise level required
for safe programs.

As seen later, operations on atomics bring a memory ordering with them-
selves which can be of the following main types:

Sequential-consistency This is a strong memory model as it imposes a global
ordering of memory operations that can’t be changed. It is like all threads
see a universal clock whose ticks corresponds each one to a program in-
struction.

Acquire-release semantic It allows faster code but only partial ordering of
memory operations is possible, allowing synchronization only between op-
erations involving the same atomics. Needless to say that intuition is
betrayed and the programmer might incur in unexpected results.

Relaxed semantic This is a weak memory that allows both the compiler and
the processor to move around memory operations without limits, providing
the best optimizations possible but incurring in the greatest risks.

3 Atomics

Operations on atomics are the foundation of the C+-+ memory model as they de-
fine synchronization and ordering constraints which affect all operations,
even non-atomic.

Atomic data types allow to declare data race free variables which are accessed
thanks to their atomic operations. In particular, an atomic store synchronizes
with an atomic load on the same data.

Even the higher level thread interface uses the capabilities of atomic opera-
tions to implement mutexes, condition variables and locks.

3.1 The atomic _flag data type

This is the first and simplest atomic data type which is entirely lock-free? for
every implementation. It works like a boolean type, representing a single bit of
information, and it allows only two operations as function members:

e test_and_set, that atomically sets the variable (i.e. setting it to set) and
returns its previous value.

e clear, which resets its content (i.e. setting it to clear).

3The other atomic structures like integers, pointers and user-defined types, provide oper-
ations that might use locks under the hood.



Notice that its set and clear possible values are not necessarily mapped to
1 and O respectively. They could be the reversals for some implementations.

The atomic_flag data type is the building block for spinlocks, a locking
mechanism for multi-threaded programs which is based on busy-waiting. In
order to protect a shared resource, threads have to lock it by setting it through
a test_and_set call and they have to unlock it when done, through a clear
call.

When the lock is set, meaning that a thread is owning the shared resource,
the other concurrent threads will repeatedly try to lock the resource, but they
will be stuck in the loop until the test_and_set call returns set, meaning the
resource was previously busy and now it’s been acquired by the caller thread:

class Spinlock {
std::atomic_-flag flag;

public:
Spinlock() : flag(ATOMIC.FLAG_INIT) {}

void lock () {
while (flag.test_and_set());

}
void unlock () {
flag.clear();
}
}i

Spinlock spin;

void WorkOnResource () {
spin.lock () ;
sleep_for (seconds (2));
spin.unlock () ;

}

int main() {
std::thread tl (workOnResource) ;
std::thread t2 (workOnResource) ;

tl.join();
t2.join();

}

Needless to say that the loop keeps the threads actually busy (100% utiliza-
tion) until they acquire the lock on the shared data.

3.2 The atomic<bool> data type

This is actually a boolean as it can be set to true or false and it provides the
most relevant operation for lock-free programming: the CAS (Compare and
Swap), which is provided by the following operator:




bool compare_exchange_strong (exp, des)

It is provided by the atomic<T> template and so it’s not limited to atomic
boolean types and its meaning is as follows:

atom<bool> SharedData;
SharedData.compare_exchange_strong (exp, des);

// Atomically performs:

//

// 1if (xSharedData == exp) {
// x*SharedData = des;

// return true;

// } else {

// *exp = SharedData;

// return false;

/7 }

Condition variables, which allow to synchronize multiple threads, can be
easily implemented using atomic<bool>. At first, the standard way to define
and use such a variable thanks to the thread interface:

vector<int> SharedData;
bool DataReady;

mutex mtx;
condition_variable cvar;

void SetDataReady () { // Producer
Sharedbata = { 1, 0, 3 };
{
lock_guard<mutex> lck (mtx);
DataReady = true;

}

cvar.notify one();

}

void WaitingForData() { // Consumer
unique_lock<mutex> lck (mtx) ;
cvar.wait (1ck, []{ return DataReady; }
SharedDatal[l] = 2;

}

int main( {
thread Tl (WaitingForData);
thread T2 (SetDataReady) ;

Tl.join();
T2.join();

for (auto v : SharedData)
cout << v << "." << endl; // 1 2 3




|}

The consumer thread will simply wait but this wait won’t be busy as it will
keep the thread stuck until data will be available. This is a more efficient wait
and synchronization mechanism then spinlock but it’s usage is lock-based and
we can get a better and simpler implementation with atomics:

vector<int> SharedData;
atomic<bool> DataReady;

void SetDataReady () {
Sharedbata = { 1, 0, 3 };
DataReady = true; // Atomic assignment

}

void WaitingForData() {
while (!DataReady.load()) // Atomic load
sleep_for(milliseconds (5));

SharedDatal[l] = 2;

}

int main() {
thread T1 (WaitingForData);
thread T2 (SetDataReady) ;

T1l.join();
T2.join();

for (auto v : SharedData)

cout << v << "U"; // 1 2 3
}

The atomic operations define synchronization and ordering constraints which
are happens-before relations:

e The atomic assignment synchronizes with the atomic load.

e The assignment to the shared data within SetDataReady is sequenced
before the atomic assignment.

e The atomic load is sequenced before the assignment to the shared data.
A partial ordering of memory operations and producer/consumer synchro-
nization are enough for the condition variable to be safe.
3.3 The atomic<T> template class

Thanks to this template class, other data types can be declared as atomics, such
as integer, pointer and user-defined types. However, some requirements must
be satisfied when T is user-defined:

e The copy-assignment operator of T and that of its parent class must be
trivial.




e Virtual methods and virtual base classes are not admitted for T.

e The T class must be bitwise comparable in order for the CAS operations
to work (for the comparison with the expected value).

The atomic operations supported by the atomic<T> template and their type
(read, write and read-modify-write) are shown in Table 1.

Operation R| W | RMW
test_and_set °
clear °
is_lock_free °
load
store °
exchange
compare_exchange _weak
compare_exchange_strong
fetch_add, +=
fetch_sub, -=
fetch_and, &=
fetch_ or, |=

fetch xor, £

++

Table 1: Atomic operations supported by the atomic<T> template class.

Functions like fetch_add perform an atomic operation and return the old
value that was stored in the atomic data. Even if multiplication and division are
not supported, they can be easily implemented with the other atomic operations:

template <typename T>
T fetchmult (atomic<T> &shared, T m) {
T old = shared.load();
while (shared.compare_exchange_strong(old, old * m));

return old;

}

int main() {
atomic<int> Sharedvalue{5};
fetch.mult (SharedvValue, 5);
cout << SharedValue << endl; // 25

}

Even more complex data structures can be implemented in a lock-free way
thanks to atomics:

template <typename T>
class LockFree. List {
struct Node {




T data;
Node x*xnext;

std::atomic<Node *> head;

public:
void push(T const &data) {
Node *xconst new_node = new Node (data);
new_node—>next = head.load();
while ('head.compare_exchange_weak (new_node—>next, new_nodg

}
¥

)

4 Synchronization and Ordering

C++ supports six memory models that can be used by atomic operations, each
one with its ordering constraints:

enum memory order {
memory_order_relaxed,
memory_order_consume,
memory_order_acquire,
memory_order_release,
memory_order_acqg.-rel,
memory._order_seqg.cst

¥

The default model is sequential-consistency. This model is used when the
operation doesn’t explicitly specify a model:

atomic<int> Shared;

Shared.load(); // => Shared.load(memory_-order_seq-cst);

Sequential-consistency is also the default memory model used by other lan-
guages like Java and C#.
If we want to use a weaker model we should choose it properly for atomic

operations according to their type (read, write or read-modify-write) as reported
by Table 2.

Memory Operation Memory Models
R memory_order_acquire, memory_order_consume
W memory_order_release
RMW memory_order_acq.rel, memory_order_seq_cst

Table 2: Memory models and operations.

As seen above, sequential-consistency forces a global memory ordering,
assuring that all threads will see the same order of operations that corresponds
to the happens-before relations found in each thread code.



The acquire-release model, on the other hand, provides a partial memory
ordering and synchronization only between operations affecting the same
atomic. This model is obtained thanks to the following enum values:

memory_order_consume
memory-order_acquire
memory_order_release
memory._order_acqg.rel

The relaxed model doesn’t guarantee any synchronization and ordering at
all, leaving to the compiler and the out-of-order execution engine of the CPU
total freedom to change the program source order.

Sequential-consistency, which was defined by Leslie Lamport for the first
time in 1979, is a strong memory model which forces a global ordering of memory
operations such:

e The operations of all threads are executed in some sequential order.

e The operations of each thread appear in the previous sequence in the order
specified by their source code.

Thus, each thread code will reflect the happens-before relations found be-
tween the instructions of its source code. This doesn’t leave any opportunity
of reordering thread instructions both to the compiler and the processor, even
if they can be reordered interleaving the code of distinct threads. The global
clock analogy also tells us that distinct thread operations cannot happend at
the same clock tick. Thus, if we have two distinct threads like in Table 3, the
executed code can only take one of the six orders shown in Table 4.

Thread 1 Thread 2
x.store(1) y.store(1)
resl = y.load() | res2 = x.load()

Table 3: Operations performed by two distinct threads.

n.1l n.2 n.3
x.store(1) x.store(1) x.store(1)
resl = y.load() y.store(1) y.store(1)
y.store(1) resl = y.load() | res2 = x.load()
res2 = x.load() | res2 = x.load() | resl = y.load()
n.4 n.5 n.6
y.store(1) y.store(1) y.store(1)
x.store(1) x.store(1) res2 = x.load()
res2 = x.load() | resl = y.load() x.store(1)
resl = y.load() | res2 = x.load() | resl = y.load()

Table 4: Possible sequential orders of operations of threads in

Despite the global order of memory operations there’s still a contract:




e The programmer has to guarantee that the source code doesn’t contain
any potential data race.

e The system guarantees the sequentially-consistent execution of program
code.

Data races can be avoided by using locking mechanisms in source code that
define critical regions, where calls to unlock will synchronize with calls to lock
on the same shared mutex object performed by different threads.

vector<int> SharedData;
mutex mtx;
bool DataReady = false;

extern void prepareDatal();
extern void consumeData () ;

void dataProducer () {
mtx.lock () ; // (1)
prepareData () ; /7 (2)
dataReady = true; // (3)
mtx.unlock () ; // (4)

}

void dataConsumer () {
mtx.lock () ; /7 (5)
if (DataReady) // (6)

consumeData (); // (7)

mtx.unlock () ; // (8)

}

int main () {
thread T1 (dataProducer);

(
thread T2 (dataConsumer) ;
Tl.join();
T2.join();

The example features the relations shown in Table 5 which, because of their
transitive nature, assure that prepareData() will be called before consumeData ()

Happens-before
Sequenced-before | Synchronizes-with
(1) = (2) (1) —=(2)

(2) = (3)
(3) = (4)
(5) = (6)
(6) = (7)
(7) = (8)

Table 5: Relations found in the mutex lock/unlock example.

10



This, however, doesn’t exclude that the synchronize-with relation might be
(8) — (1), that is dataConsumer () is executed before dataProducer. In order
for the consumer to call consumeData, a condition variable or a loop should
be used to check DataReady until it’s true. An alternative to standard mutex
lock /unlock is represented by scoped locks like lock_guard<T>.

With the acquire-release semantic the ordering is no longer global as it
only allows synchronization between a release and an acquire operation on the
same atomic data, leading also to a partial ordering constraint which affect even
non-atomic data.

Acquire-operation A read-operation like load or test_and_set (the test is
actually a read even if the instruction as a whole is read-modify-write).

Release-operation A write-operation like store or clear.

The partial ordering resulting from the model comes as a result of the inner
memory barriers of the two operation types:

Aquire-barrier Reads and writes cannot be moved before an acquire-operation.

Release-barrier Reads and writes cannot be moved after a release-operation.

Thus a store-release operation synchronizes with all load-acquire operations
reading the stored value of the same atomic and all operations in a realising
thread preceding the store-release happen-before all operations following the
load-acquire in the acquiring thread.

An example of synchronization and partial memory ordering between three
threads thanks to atomic operations and their implicit barriers:

vector<int> SharedData;

atom<bool> data_produced;
atom<bool> data_consumed;

void dataProducer () {
Sharedata = { 1, 0, 3 }; // (1)
data_-produced.store (true, memory_order_release); /7 (2)
}
void dataDelivery () {
while (!data_produced.load(memory_order_acquire)); // (3)
data-consumed.store (true, memory._order_release); // (4)
}
void dataConsumer () {
while (!data_consumed.load(memory_order_acquire)); // (5)
SharedbDatal[l] = 2; // (6)
}
int main() {

thread T1 (dataProducer);

11




thread T2 (dataConsumer) ;
thread T3 (dataDelivery);

Tl.join();
T2.join();
T3.join();

for (auto v : SharedData)
cout << v << "_." << endl;
}

The atomic operations establish the relations shown in Table 6 (note that
the synchronize-with relations mean that a release-operation cannot be moved
before an acquire operation).

Happens-before

Sequenced-before | Synchronizes-with
(1) = (2) (2) = (3)
(3) = (4) (4) = (5)
(5) — (6)

Table 6: Relations found in the producer/delivery/consumer example.

As in the case of sequential consistency this could result in multiple execution
orders but these will reflect the previous relations.

The acquire-release semantic allows to define critical regions. A mutex lock
is indeed an acquire-operation, while a mutex unlock is a release operation. As
such a lock can be implemented with a read-acquire operation and an unlock
with a write-release:

mutex mtx;
int SharedData-1{0};
int SharedData_2{0};

void Worker () {
mtx.lock () ;

// //
SharedData.-1 += 1; // Critical Region
// //

mtx.unlock () ;

SharedData.2 += 1; // Potential race condition

}

int main() {
thread T1 (Worker);
thread T2 (Worker);

T1l.join();
T2.join();

}

12



The unlock will thus synchronize-with the next lock operation using the same
mutex in order to guarantee that everything before the unlock will be visible
before the next lock. Code inside the critical region cannot be moved outside
of it, but the code outside of it can be moved inside.

As shown in Table 7, many operations performed through the thread in-
terface reflect the acquire-release semantic, leading to couples that can force
synchronization and establishing a partial order.

Acquire-operations

Release-operations

Thread Starting Joining
Mutex Locking Unlocking
Condition Variable Waiting Notifying

Table 7: Acquire-release semantic and thread interface operations.

Even a potentially faster spinlock can be implemented thanks to the acquire-
release semantic instead of using the default sequential-consistency:

class Spinlock {
atomic_flag flag;

public:

Spinlock () flag (ATOMIC_FLAG.INIT) {}

void lock() {

while (flag.test_and_set (memory_order_acquire)); // (1)
}
void unlock() {
flag.clear (memory_order_release); // (2)
}
}i

The acquire-release semantic establishes a (2) — (1) synchronize-with re-
lation and a partial ordering which assures that the effects of the operations
before the release-operation will be visible to the next acquire-operation on the
same atomic.

Consume-release semantic is a specialization of acquire-release but with-
out the ordering constraints. It only provides the synchronization between the
two operations. The key is data dependency as the following relations are es-
tablished:

e Carries-a-dependency-to in a thread.

e Dependency-ordered-before between threads from the consume-operation
to the release-operation.

All the operations in the releasing thread preceding the store-release will
happen-before operations in the consuming thread that depend on the value
loaded.

13




struct DummyStruct { int n; };
int m;
atomic<DummyStruct *> p;

void consumeFunc() {
m= 11;
auto DStr = new DummyStruct;
DStr—>n = 13;
p.store(DStr, memory._order_release);

}

void releaseFunc() {
DummyStruct *DStr;
while (!DStr = p.load(memory_orer_consume))

’

assert (p—>n == 13);

assert (m == 11); // Data race!
}
int main() {

thread T1 (consumeFunc) ;

thread T2 (releaseFunc);

T1l.join();

T2.join();
}

Finally, relaxed semantic allows only atomic operations and there’s no
synchronization nor ordering constraints. Memory operations performed by the
same thread on the same memory location are not reordered with respect to
the total modification order of the memory location, which can’t be observed
directly. This model should be used whenever possible but keeping in mind the
following rule:

Atomic operations with stronger memory orderings are used to order atomic
operations with relaxed semantic.
5 Singleton Pattern

A single object of a singleton class can be active at a time. Such a class can be
implemented in the following way:

class Singleton {
public:
static Singleton& getInstance () {
lock_guard<<mutex> lock (mtx); // Extremely expensive!!!

if (!instance)

14




instance = new Singleton();
return *instance

}
private:

Singleton () = default;

“Singleton () = default;
private:

Singleton (const Singletoné&) = delete;

const Singleton operator=(const Singleton&) = delete;
private:

static Singleton xinstance = nullptr;
}i

However, this code is extremely inefficient as each time an instance of the
class is requested there will be a lock attempt of the mutex to protect the
instantiation of the singleton.

We can do better by attempting the lock only under a specific condition
thanks to a cheap comparison in place of the mutex lock:

class Singleton {

public:
static Singleton& getInstance () {

Singleton% sin = instance.load(); // seg—cst <——
/7
if (!sin) { /7]
lock_guard<mutex> lock (mtx) ; /7

sin = instance.load(memory_order_relaxed); //
if (!sin) { /7|
sin = new Singleton(); /7

instance.store(sin); //

}
}

return sin;

}

private:
static atomic<Singleton*> instance;
static mutex mtx;

};...

The atomic load is executed twice as the atomic value might change in the
meanwhile and for this reason this is known as double-check locking pattern.
Instead of sequential-consistency, acquire-release semantic can be used in

order to gain performance benefits without altering the desired synchronize-
with relation:

15




class Singleton {
public:
static Singleton& getInstance () {
Singleton* sin =
instance.load (memory_order_acquire); // <

// |

if (!sin) { // \
lock_guard<mutex> lock (mtx) ; //
sin = instance.load(memory_order_relaxed); //

if (!sin) { // |

sin = new Singleton(); // \

instance.store(sin, memory_order_release); //

}
}

return sin;

}

private:
static atomic<Singleton*x> instance;
static mutex mtx;

};...

However, the Meyer’s pattern is the fastest as it takes advantage of a C++411
guarantee according to which static variables are created in a thread-safe way:

class Singleton {
public:
static Singleton& getInstance () {
static Singleton instance;
return instance; // Returns always the same instance

}
private:

Singleton () = default;

“Singleton () = default;

Singleton (const Singletoné&) = delete;

const Singleton& operator=(const Singleton&) = delete;
}i

6 Memory Models and the x86 Architecture

The memory model originally used by the ubiquitous x86 architecture was a
strong ordering model known as program ordering. According to it, memory
operations were issued by the CPU (i.e. appear on the system bus) in the same
order they occurred in the instruction stream of the program assembly code.
This reminds us of the sequentially-consistent model seen above.

Nowadays, however, x86 CPUs have adopted more relaxed models in order
to allow certain degrees of performance optimization at run-time. Currently,

16




the model of choice is the so-called processor ordering, whose purpose is
to increase instruction execution speed while guaranteeing memory coherency,
even in multicore and SMP systems.

The variant of processor ordering used is defined as write-ordered with store-
buffer forwarding. In a single-core system and for write-back cacheable memory
regions, the model respects the following principles:

Reads are not reordered with other reads.
Writes are not reordered with older reads.

Writes are not reordered with other writes with the exception of stream-
ing writes executed with non-temporal move instructions and string oper-
ations.

Reads may be reordered with older writes only to different locations.

Reads and writes cannot be reordered with I/O instructions, locked in-
structions or serializing instructions.

Writes cannot be reordered with cache line flushing instructions apart
from those involving lines not containing the written location.

Reads cannot be moved before 1fence and mfence instructions.

Writes and cache line flushing instructions cannot be moved before 1fence,
sfence and mfence instructions.

1fence cannot be moved before earlier reads.

sfence cannot be moved before earlier writes or cache line flushing in-
structions.

mfence cannot be moved before reads, writes and cache line flushing in-
structions.

In a multi-core or an SMP system the following ordering constraints are
respected:

Each logical core follows the previous constraints seen for a single-core

CPU.

Writes from a single logical core are observed in the same order by all
logical cores.

Writes from an individual logical core are not affected by the ordering of
the writes from other logical cores.

Any two store are seen in a consistent order by all logical cores other than
those performing the stores.

Locked instructions have a total order.

Therefore, the following pseudo-code describing the assembly code of two
thread functions would be correct for x86, without the need for any memory
fence as those commented (which would force acquire-release semantic):

17



//

// Thread 1 code
//

A =1; // (W)
B = 1; // (W)
// SFENCE
//

//

// Thread 2 code

//

while (!B) ; // (R)
// LFENCE
print A; // (R)
//

By default, the x86 architecture marks memory as write-back and thus the
constraints seen above are reflected at run-time, meaning that each mov instruc-
tion automatically guarantees ordering for acquire-release consistency, without
any additional instruction (like locks or memory fences). The same stands when
memory is marked as write-through or uncacheable. Thus, load and store
atomic operations will always be translated to plain mov instructions when the
model is acquire-release or relaxed.

For sequential-consistency on x86 one of the following memory fences is
mandatory:

o Implicit using a lock.
e FExplicit using 1fence, sfence or mfence.
This can be done in one of the following ways:

e A load without fence and a store with mfence.
e A load without fence and a lock xchg.
e A load with mfence and a store without fence.

e A lock xadd and a store without fence.

However there are cases in which the mov instructions do not automatically
guarantee acquire-release memory ordering, such as:

e When accessing memory which is marked as write-combined in the page
table (for POSIX systems this is done through the ioremap wc system
call), which guarantees only acquire consistency.

e When performing stores which cannot be reordered between them (i.e.
string operations and cacheability control instructions as not-temporal
moves and c1flush).

In these circumstances an sfence instruction must be inserted between two
writes to the same location in order to guarantee acquire-release consistency.

18




Remember that when writing C++ code not only the CPU but even the
compiler can reorder instructions and the only way to affect it is by specifying
one of the barriers supported by the atomic operations. Otherwise volatile inline
assembly code must be written.

19



	Multi-threading with C++
	The Contract
	Atomics
	The atomic_flag data type
	The atomic<bool> data type
	The atomic<T> template class

	Synchronization and Ordering
	Singleton Pattern
	Memory Models and the x86 Architecture

